Telegram Group & Telegram Channel
Какова связь между собственными значениями и собственными векторами в PCA (методе главных компонент)?

В PCA собственные значения и собственные векторы играют ключевую роль в преобразовании исходных данных в новую систему координат.

🔹Собственные значения — связаны с каждым собственным вектором и представляют собой величину дисперсии данных вдоль соответствующего собственного вектора.
🔹Собственные векторы — это направления или оси в исходном пространстве признаков, вдоль которых данные изменяются сильнее всего или проявляют наибольшую дисперсию.

Связь между ними определяется как:

A*V = lambda*V, где
A = ковариационная матрица, полученная из исходной матрицы признаков
V = собственный вектор
lambda = собственное значение.

Большее собственное значение означает, что соответствующий собственный вектор захватывает больше дисперсии в данных. Сумма всех собственных значений равна общей дисперсии в исходных данных. Следовательно, долю общей дисперсии, объясняемую каждой главной компонентой, можно вычислить, разделив её собственное значение на сумму всех собственных значений.

#машинное_обучение
#линейная_алгебра



tg-me.com/ds_interview_lib/261
Create:
Last Update:

Какова связь между собственными значениями и собственными векторами в PCA (методе главных компонент)?

В PCA собственные значения и собственные векторы играют ключевую роль в преобразовании исходных данных в новую систему координат.

🔹Собственные значения — связаны с каждым собственным вектором и представляют собой величину дисперсии данных вдоль соответствующего собственного вектора.
🔹Собственные векторы — это направления или оси в исходном пространстве признаков, вдоль которых данные изменяются сильнее всего или проявляют наибольшую дисперсию.

Связь между ними определяется как:

A*V = lambda*V, где
A = ковариационная матрица, полученная из исходной матрицы признаков
V = собственный вектор
lambda = собственное значение.

Большее собственное значение означает, что соответствующий собственный вектор захватывает больше дисперсии в данных. Сумма всех собственных значений равна общей дисперсии в исходных данных. Следовательно, долю общей дисперсии, объясняемую каждой главной компонентой, можно вычислить, разделив её собственное значение на сумму всех собственных значений.

#машинное_обучение
#линейная_алгебра

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/261

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Библиотека собеса по Data Science | вопросы с собеседований from hk


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA